Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AA’ = 2a, BC = a. Gọi M là trung điểm BB’. Bán

Câu hỏi số 410165:
Vận dụng

Cho hình lăng trụ tam giác đều ABC.A’B’C’ AA’ = 2a, BC = a. Gọi M là trung điểm BB’. Bán kính mặt cầu ngoại tiếp khối chóp M.A’B’C’ bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:410165
Phương pháp giải

- Gọi \(O,\,\,O'\) lần lượt là tâm tam giác đều ABC và A’B’C’, khi đó ta có OO’ là trục của (A’B’C’).

Gọi N là trung điểm của B’M, E là trung điểm của A’C’, qua N kẻ NI // B’E \(\left( {I \in OO'} \right)\), chứng minh \(IA' = IB' = IC' = IM\).

- Sử dụng định lí Pytago tính bán kính mặt cầu.

Giải chi tiết

Gọi \(O,\,\,O'\) lần lượt là tâm tam giác đều ABC và A’B’C’, khi đó ta có OO’ là trục của (A’B’C’).

Gọi N là trung điểm của B’M, E là trung điểm của A’C’.

Qua N kẻ NI // B’E \(\left( {I \in OO'} \right)\) ta có:

\(\left\{ \begin{array}{l}B'E \bot BB'\\NI\parallel B'E\end{array} \right. \Rightarrow NI \bot BB'\) \( \Rightarrow IM = IB'\).

Lại có \(I \in OO'\) nên \(IA' = IB' = IC'\).

Do đó ta có \(IA' = IB' = IC' = IM\)  nên I là tâm mặt cầu ngoại tiếp chóp M.A’B’C’, bán kính \(R = IB'\).

Ta có: \(\left\{ \begin{array}{l}NI\parallel B'O'\\B'N\parallel O'I\end{array} \right.\) nên O’B’NI là hình bình hành \( \Rightarrow O'I = B'N = \dfrac{1}{2}B'M = \dfrac{1}{4}BB' = \dfrac{a}{2}\).

Tam giác A’B’C’ đều cạnh a nên \(B'E = \dfrac{{a\sqrt 3 }}{2} \Rightarrow B'O = \dfrac{2}{3}B'E = \dfrac{{a\sqrt 3 }}{3}\).

Áp dụng định lí Pytago trong tam giác vuông O’B’I có:

\(IB' = \sqrt {O'{I^2} + B'O{'^2}}  = \sqrt {{{\left( {\dfrac{a}{2}} \right)}^2} + {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt {21} }}{6}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com