Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;1} \right]\) và \(\int\limits_0^{\frac{\pi
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;1} \right]\) và \(\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)} dx = 5\). Tính \(I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx\).
Đáp án đúng là: C
Quảng cáo
- Biến đổi \(I = \int\limits_0^\pi {xf\left( {\sin x} \right)dx} = \int\limits_0^{\frac{\pi }{2}} {xf\left( {\sin x} \right)dx} + \int\limits_{\frac{\pi }{2}}^\pi {xf\left( {\sin x} \right)dx} \).
- Xét tích phân \({I_1} = \int\limits_{\frac{\pi }{2}}^\pi {xf\left( {\sin x} \right)dx} \), sử dụng phương pháp đổi biến số, đặt \(t = \pi - x\).
- Sử dụng tính chất sin bù: \(\sin \left( {\pi - x} \right) = \sin x\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












