Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào một dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1

Câu hỏi số 410713:
Vận dụng

Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào một dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để hai bạn AB không ngồi cạnh nhau.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:410713
Phương pháp giải

- Tính số phần tử của không gian mẫu, sử dụng hoán vị.

- Gọi X là biến cố: “hai bạn A và B không ngồi cạnh nhau”, xác định biến cố đối \(\bar X\).

- Tính số phần tử của biến cố đối \(\bar X\).

- Tính xác suất của biến cố đối \(\bar X\).

- Tính xác suất của biến cố X: \(P\left( X \right) = 1 - P\left( {\bar X} \right)\).

Giải chi tiết

Xếp 5 học sinh A, B, C, D, E vào một dãy 5 ghế thẳng hàng có \(5!\) cách xếp \( \Rightarrow n\left( \Omega  \right) = 5! = 120\).

Gọi X là biến cố: “hai bạn A và B không ngồi cạnh nhau” \( \Rightarrow \) Biến cố đối \(\bar X\): “hai bạn A và B ngồi cạnh nhau”.

Buộc hai bạn A và B coi là 1 phần tử, có 2! cách đổi chỗ 2 bạn A và B trong buộc này.

Bài toán trở thành xếp 4 bạn (AB), C, D, E vào một dãy 4 ghế thẳng hàng \( \Rightarrow \) Có 4! cách xếp.

\( \Rightarrow n\left( {\bar X} \right) = 2!.4! = 48\).

\( \Rightarrow P\left( {\bar X} \right) = \dfrac{{n\left( {\bar X} \right)}}{{n\left( \Omega  \right)}} = \dfrac{{48}}{{120}} = \dfrac{2}{5}\).

Vậy \(P\left( X \right) = 1 - P\left( {\bar X} \right) = 1 - \dfrac{2}{5} = \dfrac{3}{5}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com