Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,\,y = mx + 2\)

Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,\,y = mx + 2\)

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Với \(m =  - 1\). Tìm tọa độ các giao điểm của \(\left( P \right)\) và \(\left( d \right).\)

Đáp án đúng là: A

Câu hỏi:411140
Phương pháp giải

Thay \(m =  - 1\) vào phương trình đường thẳng \(d.\) 

Xét phương trình hoành độ giao điểm của hai đồ thị và giải phương trình tìm \(x \Rightarrow y\) ta được tọa độ các giao điểm của \(\left( P \right)\)  và \(\left( d \right).\)

Giải chi tiết

Thay \(m =  - 1\) vào phương trình đường thẳng \(\left( d \right)\) ta được: \(y =  - x + 2\)

Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) ta có:

\(\begin{array}{l}{x^2} =  - x + 2\\ \Leftrightarrow {x^2} + x - 2 = 0\\ \Leftrightarrow {x^2} + 2x - x - 2 = 0\\ \Leftrightarrow x\left( {x + 2} \right) - \left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 2 \Rightarrow y = 4\\x = 1 \Rightarrow y = 1\end{array} \right.\end{array}\)

Vậy với \(m =  - 1\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại 2 điểm phân biệt \(\left( { - 2;4} \right);\,\,\,\left( {1;1} \right).\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

Tìm các giá trị của \(m\) để \(\left( d \right)\)  cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) sao cho \({x_1} - 2{x_2} = 5.\)

Đáp án đúng là: D

Câu hỏi:411141
Phương pháp giải

Xét phương trình hoành độ giao điểm \(\left( * \right)\) của hai đồ thị hàm số.

Đường thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0.\)

Sử dụng điều kiện \({x_1} - 2{x_2} = 5\) và áp dụng hệ thức Viét \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \frac{{ - b}}{a}\\P = {x_1}.{x_2} = \frac{c}{a}\end{array} \right.\)  (với \({x_1};{x_2}\) là 2 nghiệm của phương trình \(\left( * \right)\))để giải tìm \(m.\) 

Đối chiếu với điều kiện có nghiệm rồi kết luận.

Giải chi tiết

Xét phương trình hoành độ giao điểm của \(\left( P \right)\)  và \(\left( d \right)\) ta có:

\({x^2} = mx + 2\)\( \Leftrightarrow {x^2} - mx - 2 = 0\,\,\,\left( * \right)\)

Đường thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\)

\( \Leftrightarrow {m^2} + 8 > 0\)

Ta có: \({m^2} + 8 > 0\,\,\forall m\)

\( \Rightarrow \left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) với mọi \(m.\)

Khi đó ta có: \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình \(\left( * \right).\)

Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\,\,\,\,\left( 1 \right)\\{x_1}{x_2} =  - 2\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Theo giả thiết ta có:  \({x_1} - 2{x_2} = 5\,\,\,\left( 3 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 3 \right)\) ta có hệ phương trình:\(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1} - 2{x_2} = 5\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - {x_2}\\3{x_2} = m - 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_1} = \frac{{2m + 5}}{3}\\{x_2} = \frac{{m - 5}}{3}\end{array} \right.\)

Thay \({x_1},\,\,{x_2}\) vào \(\left( 2 \right)\) ta được:

\(\begin{array}{l}\frac{{2m + 5}}{3}.\frac{{m - 5}}{3} =  - 2\\ \Leftrightarrow \left( {2m + 5} \right)\left( {m - 5} \right) =  - 18\\ \Leftrightarrow 2{m^2} - 10m + 5m - 25 + 18 = 0\\ \Leftrightarrow 2{m^2} - 5m - 7 = 0\\ \Leftrightarrow 2{m^2} - 7m + 2m - 7 = 0\end{array}\)

\(\begin{array}{l} \Leftrightarrow m\left( {2m - 7} \right) + \left( {2m - 7} \right) = 0\\ \Leftrightarrow \left( {2m - 7} \right)\left( {m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2m - 7 = 0\\m + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{7}{2}\\m =  - 1\end{array} \right.\end{array}\)

Vậy với \(\left[ \begin{array}{l}m =  - 1\\m = \frac{7}{2}\end{array} \right.\) thỏa mãn yêu cầu đề bài

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com