Phương trình mặt phẳng vuông góc với mặt phẳng \(\left( \alpha \right):2x - 3y + z - 2 = 0\) và
Phương trình mặt phẳng vuông góc với mặt phẳng \(\left( \alpha \right):2x - 3y + z - 2 = 0\) và chứa đường thẳng \(d:\dfrac{x}{{ - 1}} = \dfrac{{y + 1}}{2} = \dfrac{{z - 2}}{{ - 1}}\) là:
Đáp án đúng là: B
Quảng cáo
- Xác định VTPT của mặt phẳng \(\left( \alpha \right)\) là \(\overrightarrow {{n_\alpha }} \), VTCP của đường thẳng \(\left( d \right)\) là \(\overrightarrow {{u_d}} \).
- Gọi \(\left( P \right)\) là mặt phẳng cần tìm, \(\left\{ \begin{array}{l}\overrightarrow {{n_P}} .\overrightarrow {{n_\alpha }} = 0\\\overrightarrow {{n_P}} .\overrightarrow {{u_d}} = 0\end{array} \right. \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{u_d}} } \right]\).
- Chọn \(M \in d\) bất kì \( \Rightarrow M \in \left( P \right)\).
- Phương trình mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình là:
\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












