Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Tam giác \(SAB\) vuông tại \(S\) và
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Tam giác \(SAB\) vuông tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Hình chiếu vuông góc của \(S\) trên \(AB\) là điểm \(H\) thỏa mãn \(AH = 2BH\). Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD\).
Đáp án đúng là: D
Quảng cáo
Sử dụng hệ thức lượng trong tam giác vuông tính chiều cao \(SH\): \(S{H^2} = AH.BH\).
Sử dụng công thức tính thể tích chóp có chiều cao \(h\), diện tích đáy \(S\) là \(V = \dfrac{1}{3}Sh\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













