Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(C\), cạnh huyền \(AB\) bằng 3.
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(C\), cạnh huyền \(AB\) bằng 3. Hình chiếu vuông góc của \(S\) xuống mặt đáy trùng với trọng tâm của tam giác \(ABC\) và \(SB = \dfrac{{\sqrt {14} }}{2}\). Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABC\)?
Đáp án đúng là: C
Quảng cáo
- Tính độ dài các cạnh \(AC,\,\,BC\).
- Gọi \(G\) là trọng tâm \(\Delta ABC\) và \(M\) là trung điểm của \(AC\), áp dụng định lí Pytago tính \(BM\), từ đó suy ra độ dài \(BG\).
- Tiếp tục áp dụng định lí Pytago tính độ dài đường cao \(SG\).
- Sử dụng công thức tính thể tích khối chóp \({V_{S.ABC}} = \dfrac{1}{3}SG.{S_{\Delta ABC}}\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













