Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\). Tam giác \(ABC\) đều, hình chiếu

Câu hỏi số 412362:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\). Tam giác \(ABC\) đều, hình chiếu vuông góc \(H\) của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm của tam giác \(ABC\). Đường thẳng \(SD\) hợp với mặt phẳng \(\left( {ABCD} \right)\) góc \({30^0}\). Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:412362
Phương pháp giải

- Gọi \(O = AC \cap BD\), \(H\) là trọng tâm \(\Delta ABC\) \( \Rightarrow SH \bot \left( {ABCD} \right)\).

- Dựa vào tam giác \(ABC\) đều cạnh \(a\), tính độ dài các đoạn thẳng \(BH,\,\,HD\).

- Xác định góc giữa \(SD\) và \(\left( {ABCD} \right)\) là góc giữa \(SD\) và hình chiếu của \(SD\) lên \(\left( {ABCD} \right)\).

- Dựa vào tỉ số lượng giác của góc nhọn trong tam giác vuông tính độ dài đường cao \(AH\).

- Tính \({S_{\Delta ABC}}\), từ đó suy ra \({S_{ABCD}} = 2{S_{\Delta ABC}}\).

- Sử dụng công thức tính thể tích \(V = \dfrac{1}{3}SH.{S_{ABCD}}\).

Giải chi tiết

Gọi \(O = AC \cap BD\), \(H\) là trọng tâm \(\Delta ABC\) \( \Rightarrow SH \bot \left( {ABCD} \right)\).

Tam giác \(ABC\) đều cạnh \(a\) \( \Rightarrow BO = \dfrac{{a\sqrt 3 }}{2} \Rightarrow BD = a\sqrt 3 \) và \({S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\) \( \Rightarrow {S_{ABCD}} = 2{S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{2}\).

\(H\) là trọng tâm \(\Delta ABC\) \( \Rightarrow BH = \dfrac{2}{3}BO = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\) \( \Rightarrow HD = BD - BH = a\sqrt 3  - \dfrac{{a\sqrt 3 }}{3} = \dfrac{{2a\sqrt 3 }}{3}\).

Vì \(SH \bot \left( {ABCD} \right)\) nên \(HD\) là hình chiếu của \(SD\) lên \(\left( {ABCD} \right)\)

\( \Rightarrow \angle \left( {SD;\left( {ABCD} \right)} \right) = \angle \left( {SD;HD} \right) = \angle SDH = {30^0}\).

Xét tam giác vuông \(SHD\) có: \(SH = HD.\tan {30^0} = \dfrac{{2a\sqrt 3 }}{3}.\dfrac{1}{{\sqrt 3 }} = \dfrac{{2a}}{3}\).

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{2a}}{3}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{9}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com