Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, mặt bên \(SAD\) là tam giác vuông tại

Câu hỏi số 412363:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, mặt bên \(SAD\) là tam giác vuông tại \(S\). Hình chiếu vuông góc của \(S\) trên mặt đáy là điểm \(H\) thuộc cạnh \(AD\) sao cho \(HA = 3HD\). Biết rằng \(SA = 2a\sqrt 3 \) và \(SC\) tạo với đáy một góc bằng \({30^0}\). Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:412363
Phương pháp giải

- Đặt \(AD = 4x \Rightarrow AH = 3x,\,\,HD = x\). Áp dụng hệ thức lượng trong tam giác vuông \(S{A^2} = AH.HD\) biểu diễn \(x\) theo \(a\).

- Tính chiều cao \(SH\), sử dụng hệ thức lượng trong tam giác vuông \(S{H^2} = AH.HD\) .

- Xác định góc giữa \(SC\) và \(\left( {ABCD} \right)\) là góc giữa \(SC\) và hình chiếu của \(SC\) lên \(\left( {ABCD} \right)\), từ đó tính độ dài \(HC\).

- Áp dụng định lí pytago trong tam giác vuông tính \(CD\) và tính \({S_{ABCD}}\).

- Sử dụng công thức tính thể tích khối chóp \(V = \dfrac{1}{3}SH.{S_{ABCD}}\).

Giải chi tiết

Đặt \(AD = 4x \Rightarrow AH = 3x,\,\,HD = x\).

Áp dụng hệ thức lượng trong tam giác vuông \(SAD\) có:

\(\begin{array}{l}S{A^2} = AH.AD\\ \Leftrightarrow 12{a^2} = 3x.4x = 12{x^2}\\ \Leftrightarrow x = a\end{array}\)

\( \Rightarrow AD = 4a,\,\,AH = 3a,\,\,HD = a\).

Lại có: \(S{H^2} = AH.HD = 3a.a = 3{a^2}\) \( \Rightarrow SH = a\sqrt 3 \).

Ta có \(SH \bot \left( {ABCD} \right)\) nên \(HC\) là hình chiếu vuông góc của \(SC\) lên \(\left( {ABCD} \right)\).

\( \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;HC} \right) = \angle SCH = {30^0}\).

Xét tam giác vuông \(SHC\) có: \(HC = SH.cot{30^0} = a\sqrt 3 .\sqrt 3  = 3a\).

Áp dụng định lí Pytago trong tam giác vuông \(CDH\) có:

\(CD = \sqrt {C{H^2} - H{D^2}}  = \sqrt {9{a^2} - {a^2}}  = 2a\sqrt 2 \).

\( \Rightarrow {S_{ABCD}} = AD.CD = 4a.2a\sqrt 2  = 8\sqrt 2 {a^2}\).

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 3 .8\sqrt 2 {a^2} = \dfrac{{8{a^3}\sqrt 6 }}{3}\).

 Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com