Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = 16\) và \(\int\limits_0^2 {f\left( x

Câu hỏi số 413412:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = 16\) và \(\int\limits_0^2 {f\left( x \right)dx}  = 4\). Tính \(\int\limits_0^1 {x.f'\left( {2x} \right)dx} \).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:413412
Phương pháp giải

- Tính tích phân bằng phương pháp đổi biến số, đặt \(t = 2x\).

- Tính tích phân bằng phương pháp từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

- Sử dụng tính chất tích phân: \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^b {f\left( t \right)dt} \).

Giải chi tiết

Đặt \(t = 2x \Rightarrow dt = 2dx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 2\end{array} \right.\), khi đó ta có: \(\int\limits_0^1 {x.f'\left( {2x} \right)dx}  = \dfrac{1}{4}\int\limits_0^2 {tf'\left( t \right)dt} \).

Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\).

\(\begin{array}{l} \Rightarrow \int\limits_0^2 {tf'\left( t \right)dt}  = \left. {tf\left( t \right)} \right|_0^2 - \int\limits_0^2 {f\left( t \right)dt} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2f\left( 2 \right) - \int\limits_0^2 {f\left( x \right)dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2.16 - 4 = 28\end{array}\)

Vậy \(\int\limits_0^1 {x.f'\left( {2x} \right)dx}  = \dfrac{1}{4}.28 = 7\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com