Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị lớn nhất của hàm số \(f\left( x \right) = x + \sqrt {8 - {x^2}} \) bằng:

Câu hỏi số 413686:
Thông hiểu

Giá trị lớn nhất của hàm số \(f\left( x \right) = x + \sqrt {8 - {x^2}} \) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:413686
Phương pháp giải

Cách 1:

+) Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:

+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)

+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\)  Khi đó:

\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\) 

Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)

Giải chi tiết

Xét hàm số: \(f\left( x \right) = x + \sqrt {8 - {x^2}} \) ta có: TXĐ: \(D = \left[ { - 2\sqrt 2 ;\,\,2\sqrt 2 } \right]\)

\(f'\left( x \right) = 1 - \dfrac{x}{{\sqrt {8 - {x^2}} }}\) \( \Rightarrow f'\left( x \right) = 0\)\( \Leftrightarrow 1 - \dfrac{x}{{\sqrt {8 - {x^2}} }} = 0\)

\(\begin{array}{l} \Leftrightarrow \sqrt {8 - {x^2}}  - x = 0 \Leftrightarrow \sqrt {8 - {x^2}}  = x\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\8 - {x^2} = {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2{x^2} = 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x = 2\\x =  - 2\end{array} \right.\end{array} \right.\\ \Leftrightarrow x = 2 \in \left[ { - 2\sqrt 2 ;\,\,2\sqrt 2 } \right]\\ \Rightarrow \left\{ \begin{array}{l}f\left( { - 2\sqrt 2 } \right) =  - 2\sqrt 2 \\f\left( 2 \right) = 4\\f\left( {2\sqrt 2 } \right) = 2\sqrt 2 \end{array} \right.\\ \Rightarrow \mathop {Max}\limits_{\left[ { - 2\sqrt 2 ;\,\,\,2\sqrt 2 } \right]} f\left( x \right) = f\left( 2 \right) = 4.\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com