Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \dfrac{{{x^2} + x + 3}}{{x - 2}}\) trên \(\left[ { - 2;\,\,1} \right].\) Giá trị của \(M + m\) bằng:

Câu 415138: Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \dfrac{{{x^2} + x + 3}}{{x - 2}}\) trên \(\left[ { - 2;\,\,1} \right].\) Giá trị của \(M + m\) bằng:

A. \( - 5\)

B. \( - \dfrac{9}{4}\)

C. \( - 6\)

D. \( - \dfrac{{25}}{4}\)

Câu hỏi : 415138

Phương pháp giải:

Cách 1:


+) Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:


+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)


+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\)  Khi đó:


\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\) 


Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)

  • Đáp án : C
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Xét hàm số: \(y = \dfrac{{{x^2} + x + 3}}{{x - 2}}\)  trên \(\left[ { - 2;\,\,1} \right]\) ta có:

    \(y' = \dfrac{{\left( {2x + 1} \right)\left( {x - 2} \right) - {x^2} - x - 3}}{{{{\left( {x - 2} \right)}^2}}}\) \( = \dfrac{{2{x^2} - 3x - 2 - {x^2} - x - 3}}{{{{\left( {x - 2} \right)}^2}}}\)\( = \dfrac{{{x^2} - 4x - 5}}{{{{\left( {x - 2} \right)}^2}}}\)

    \( \Rightarrow y' = 0 \Leftrightarrow {x^2} - 4x - 5 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x =  - 1 \in \left[ { - 2;\,\,1} \right]\\x = 5\,\, \notin \left[ { - 2;\,\,1} \right]\end{array} \right.\)

    \( \Rightarrow \left\{ \begin{array}{l}y\left( { - 2} \right) =  - \dfrac{5}{4}\\y\left( { - 1} \right) =  - 1\\y\left( 1 \right) =  - 5\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}m = \mathop {Min}\limits_{\left[ { - 2;\,\,1} \right]} y =  - 5\\M = \mathop {Max}\limits_{\left[ { - 2;\,\,1} \right]} y =  - 1\end{array} \right.\) \( \Rightarrow M + m =  - 1 - 5 =  - 6.\)

    Chọn C.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com