Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng \(z\) là số phức có môđun nhỏ nhất thỏa mãn \(\left( {1 - z} \right)\left( {\bar z + 2i}

Câu hỏi số 417459:
Vận dụng

Biết rằng \(z\) là số phức có môđun nhỏ nhất thỏa mãn \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\) là số thực. Số phức \(z\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:417459
Phương pháp giải

Cách 1:

- Đặt \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\), thay vào biểu thức \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\), tìm điều kiện để \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\) là số thực, tức là \({\mathop{\rm Im}\nolimits} \left( {1 - z} \right)\left( {\bar z + 2i} \right) = 0\), biểu diễn \(y\) theo \(x\).

- Tính \(\left| z \right| = \sqrt {{x^2} + {y^2}} \), thế \(y\) theo \(x\) tìm được ở trên, tìm GTNN của biểu thức dạng \(a{x^2} + bx + c\,\,\left( {a \ne 0} \right)\), biểu thức đạt GTNN tại \(x =  - \dfrac{b}{{2a}}\) với \(a > 0\).

Cách 2:

- Tính môđun cả 4 số phức ở 4 đáp án, thử từ số phức có môđun nhỏ nhất.

- Thay lần lượt các số phức ở các đáp án vào biểu thức \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\), tìm số phức thỏa mãn \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\) là số thực.

Giải chi tiết

Cách 1:

Gọi \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\), theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\left( {1 - z} \right)\left( {\bar z + 2i} \right)\\ = \left( {1 - x - yi} \right)\left( {x - yi + 2i} \right)\\ = \left( {1 - x - yi} \right)\left( {x - \left( {y - 2} \right)i} \right)\\ = \left( {1 - x} \right)x - \left( {1 - x} \right)\left( {y - 2} \right)i - xyi - y\left( {y - 2} \right)\\ = \left[ {\left( {1 - x} \right)x - y\left( {y - 2} \right)} \right] - \left[ {\left( {1 - x} \right)\left( {y - 2} \right) + xy} \right]i\end{array}\)

Để \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\) là số thực thì \({\mathop{\rm Im}\nolimits} \left( {1 - z} \right)\left( {\bar z + 2i} \right) = 0\)

\(\begin{array}{l} \Leftrightarrow \left( {1 - x} \right)\left( {y - 2} \right) + xy = 0\\ \Leftrightarrow y - 2 - xy + 2x + xy = 0\\ \Leftrightarrow y = 2 - 2x\end{array}\)

Khi đó ta có: \({\left| z \right|^2} = {x^2} + {y^2} = {x^2} + {\left( {2 - 2x} \right)^2} = 5{x^2} - 8x + 4\).

 \( \Rightarrow {\left| z \right|_{\min }} \Leftrightarrow {\left| z \right|^2}_{\min } \Leftrightarrow x = \dfrac{8}{{2.5}} = \dfrac{4}{5}\), khi đó \(y = 2 - 2.\dfrac{4}{5} = \dfrac{2}{5}\).

Vậy số phức \(z\) thỏa mãn yêu cầu bài toán là: .\(z = \dfrac{4}{5} + \dfrac{2}{5}i\).

Cách 2:

Tính môđun tất cả các số phức ở các đáp án:

\(z = 1 + \dfrac{1}{2}i \Rightarrow \left| z \right| = \dfrac{{\sqrt 5 }}{2}\)

\(z = \dfrac{3}{5} + \dfrac{4}{5}i \Rightarrow \left| z \right| = 1\)

\(z = 2i \Rightarrow \left| z \right| = 2\)

\(z = \dfrac{4}{5} + \dfrac{2}{5}i \Rightarrow \left| z \right| = \dfrac{{2\sqrt 5 }}{5}\).

Thử từ số phức có môđun nhỏ nhất.

Xét đáp án D, thay số phức \(z = \dfrac{4}{5} + \dfrac{2}{5}i\) vào biểu thức \(\left( {1 - z} \right)\left( {\bar z + 2i} \right)\) (sử dụng MTCT):

là số thực, thỏa mãn.Vậy số phức \(z = \dfrac{4}{5} + \dfrac{2}{5}i\) thỏa mãn yêu cầu bài toán.

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com