Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian vói hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {1;1;2} \right)\) và \(B\left( {2; - 1;0}

Câu hỏi số 418785:
Thông hiểu

Trong không gian vói hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {1;1;2} \right)\) và \(B\left( {2; - 1;0} \right)\). Viết phương trình đường thẳng \(AB\)?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:418785
Phương pháp giải

- Đường thẳng \(AB\) nhận \(\overrightarrow {AB} \) là 1 VTCP.

- Phương trình đường thẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) là \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) \(\left( {t \in \mathbb{R}} \right)\).

Giải chi tiết

Ta có \(\overrightarrow {AB}  = \left( {1; - 2; - 2} \right)\) là 1 VTCP của đường thẳng \(AB\).

Vậy phương trình đường thẳng \(AB\) đi qua \(B\left( {2; - 1;0} \right)\) và có 1 VTCP \(\overrightarrow {AB}  = \left( {1; - 2; - 2} \right)\) là \(\left\{ \begin{array}{l}x = 2 + k\\y =  - 1 - 2k\\z =  - 2k\end{array} \right.\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com