Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC}

Câu hỏi số 419738:
Thông hiểu

Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\)và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:419738
Phương pháp giải

- Gọi \(M\) là trung điểm của \(BC\), chứng minh \(\angle \left( {\left( {A'BC} \right);\left( {ABC} \right)} \right) = \angle A'MA\).

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao \(AA'\).

- Tính thể tích khối lăng trụ \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}}\).

Giải chi tiết

Gọi \(M\) là trung điểm của \(BC\). Ta có:

\(AM \bot BC\) (do \(\Delta ABC\) đều)

\(BC \bot AA'\,\,\left( {gt} \right)\)

\( \Rightarrow BC \bot \left( {AA'M} \right) \Rightarrow BC \bot A'M\).

Ta có: \(\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\AM \subset \left( {ABC} \right),\,\,AM \bot BC\\A'M \subset \left( {A'BC} \right),\,\,A'M \bot BC\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {A'BC} \right);\left( {ABC} \right)} \right) = \angle \left( {A'M;AM} \right) = \angle A'MA = {60^0}\).

Vì \(\Delta ABC\) đều cạnh \(a\) nên \(AM = \dfrac{{a\sqrt 3 }}{2}\) và \({S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Xét tam giác vuông \(A'AM\) có: \(AA' = AM.\tan {60^0} = \dfrac{{a\sqrt 3 }}{2}.\sqrt 3  = \dfrac{{3a}}{2}\).

Vậy thể tích khối lăng trụ là \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}} = \dfrac{{3a}}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{3{a^2}\sqrt 3 }}{8}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com