Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^3} - 3{m^2}x\). Tìm \(m\) để hàm số nghịch biến trên đoạn có độ dài bằng

Câu hỏi số 420101:
Vận dụng

Cho hàm số \(y = {x^3} - 3{m^2}x\). Tìm \(m\) để hàm số nghịch biến trên đoạn có độ dài bằng 2.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:420101
Phương pháp giải

- Hàm số nghịch biến trên đoạn có độ dài bằng 2 \( \Rightarrow y' \le 0\,\,\forall x \in \left[ {{x_1};{x_2}} \right]\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| = 2\).

- Tìm điều kiện để \(y' \le 0\,\,\forall x \in \left[ {{x_1};{x_2}} \right]\) và sử dụng định lí Vi-et cho phương trình bậc hai \(a{x^2} + bx + c = 0\): \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\).

Giải chi tiết

+ Hàm số đã cho có TXĐ \(D = \mathbb{R}\).

+ Ta có: \(y' = 3{x^2} - 3{m^2}\).

+ Hàm số nghịch biến trên đoạn có độ dài bằng 2 \( \Rightarrow y' \le 0\,\,\forall x \in \left[ {{x_1};{x_2}} \right]\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| = 2\)

Ta có: \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x =  - m\end{array} \right.\) \( \Rightarrow m \ne 0\).

+ \(\left| {{x_1} - {x_2}} \right| = 2 \Leftrightarrow \left| {2m} \right| = 2 \Leftrightarrow m =  \pm 1\,\,\left( {tm} \right)\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com