Cho hàm số \(y = ax + b\) có đồ thị là đường thẳng \(\left( d \right)\). Xác định các giá trị
Cho hàm số \(y = ax + b\) có đồ thị là đường thẳng \(\left( d \right)\). Xác định các giá trị của \(a\) và \(b\) biết \(\left( d \right)\) song song với đường thẳng \(y = - \dfrac{1}{2}x + 2020\) và \(\left( d \right)\) cắt trục hoành tại điểm có hoành độ bằng \( - 5\).
Đáp án đúng là: A
Vận dụng tính chất hai đường thẳng song sọng, xác định điều kiện của hệ số \(a,b\)
Từ giả thiết của bài toán: \(\left( d \right)\) cắt trục hoành tại điểm có hoành độ bằng \( - 5\) xác định được hệ số \(b\), sau đó đối chiếu điều kiện và đưa ra kết luận.
Vì đường thẳng \(\left( d \right):\,\,y = ax + b\) song song với đường thẳng \(y = - \dfrac{1}{2}x + 2020\) nên: \(\left\{ \begin{array}{l}a = - \dfrac{1}{2}\\b \ne 2020\end{array} \right.\).
Khi đó phương trình đường thẳng \(\left( d \right)\) có dạng \(\left( d \right):\,\,y = - \dfrac{1}{2}x + b\), với \(b \ne 2020\).
Vì \(\left( d \right)\) cắt trục hoành tại điểm có hoành độ bằng \( - 5\) nên đường thẳng \(\left( d \right)\) đi qua điểm \(\left( { - 5;0} \right)\).
Thay tọa độ điểm \(\left( { - 5;0} \right)\) và phương trình đường thẳng \(\left( d \right)\) ta có:
\(0 = - \dfrac{1}{2}.\left( { - 5} \right) + b \Leftrightarrow 0 = \dfrac{5}{2} + b \Leftrightarrow b = - \dfrac{5}{2}\) (thỏa mãn).
Vậy \(a = - \dfrac{1}{2}\) và \(b = - \dfrac{5}{2}.\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com