Giải hệ phương trình \(\left\{ \begin{array}{l}3\left( {x - 1} \right) + 2\left( {x - 2y} \right) = 10\\4\left(
Giải hệ phương trình \(\left\{ \begin{array}{l}3\left( {x - 1} \right) + 2\left( {x - 2y} \right) = 10\\4\left( {x - 2} \right) - \left( {x - 2y} \right) = 2\end{array} \right.\).
Đáp án đúng là: A
Biến đổi hệ phương trình ban đầu về đơn giản, vận dụng phương pháp cộng đại số xác định nghiệm của hệ phương trình.
Ta có:
\(\begin{array}{l}\,\,\,\,\,\left\{ \begin{array}{l}3\left( {x - 1} \right) + 2\left( {x - 2y} \right) = 10\\4\left( {x - 2} \right) - \left( {x - 2y} \right) = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}3x - 3 + 2x - 4y = 10\\4x - 8 - x + 2y = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5x - 4y = 13\\3x + 2y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x - 4y = 13\\6x + 4y = 20\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}11x = 33\\3x + 2y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3.3 + 2y = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 3\\2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \dfrac{1}{2}\end{array} \right.\end{array}\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {3;\dfrac{1}{2}} \right)\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com