Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(x\) là ẩn

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

Trả lời cho các câu 421539, 421540 dưới đây:

Câu hỏi số 1:
Vận dụng

Giải phương trình \(\left( 1 \right)\) với \(m = 7.\)

Đáp án đúng là: D

Câu hỏi:421540
Phương pháp giải

Thay giá trị \(m = 7\) vào phương trình, biến đổi đưa phương trình về dạng tích: \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\) sau đó giải từng phương trình từ đó xác định được nghiệm của phương trình ban đầu.

Giải chi tiết

Với \(m = 7\) ta có phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\,{x^2} - 2\left( {7 + 1} \right)x + {7^2} - 1 = 0\,\,\,\,\\ \Leftrightarrow {x^2} - 16x + 48 = 0\\ \Leftrightarrow {x^2} - 4x - 12x + 48 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 12\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 12} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 12 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 12\\x = 4\end{array} \right..\end{array}\)

Vậy với \(m = 7\) thì phương trình có tập nghiệm là \(S = \left\{ {4;\,\,12} \right\}.\)

Câu hỏi số 2:
Vận dụng

Xác định các giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) sao cho biểu thức \(M = x_1^2 + x_2^2 - {x_1}{x_2}\) đạt giá trị nhỏ nhất.

Đáp án đúng là: B

Câu hỏi:421541
Phương pháp giải

Phương trình ban đầu có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0\), tìm được điều kiện cần

Áp dụng hệ thức Vi – ét, xác định được \({x_1} + {x_2};{x_1}{x_2}\)

Biến đổi biếu thức \(M\) sao cho xuất hiện \({x_1} + {x_2};{x_1}{x_2}\), từ đó xác định được tham số \(m\)

Chú ý: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\)

Giải chi tiết

Phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\)

\(\begin{array}{l} \Leftrightarrow \Delta ' \ge 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} - {m^2} + 1 \ge 0\\ \Leftrightarrow {m^2} + 2m + 1 - {m^2} + 1 \ge 0\\ \Leftrightarrow 2m + 2 \ge 0\\ \Leftrightarrow m \ge  - 1.\end{array}\)

Với \(m \ge  - 1\) thì phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}.\)

Áp dụng hệ thức Vi-et ta có:\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right) = 2m + 2\\{x_1}{x_2} = {m^2} - 1\end{array} \right..\)

Theo đề bài ta có:

\(\begin{array}{l}M = x_1^2 + x_2^2 - {x_1}{x_2}\\\,\,\,\,\,\,\,\, = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - {x_1}{x_2}\\\,\,\,\,\,\,\,\, = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\\\,\,\,\,\,\,\,\, = {\left( {2m + 2} \right)^2} - 3\left( {{m^2} - 1} \right)\\\,\,\,\,\,\,\, = 4{m^2} + 8m + 4 - 3{m^2} + 3\\\,\,\,\,\,\,\, = {m^2} + 8m + 7\\\,\,\,\,\,\,\, = {m^2} + 8m + 16 - 9\\\,\,\,\,\,\,\, = {\left( {m + 4} \right)^2} - 9\end{array}\)

Với \(m \ge  - 1\) \( \Rightarrow m + 4 \ge 3\) \( \Rightarrow {\left( {m + 4} \right)^2} \ge 9 \Rightarrow {\left( {m + 4} \right)^2} - 9 \ge 0\)

\( \Rightarrow Min\,\,M = 0\)

Dấu “=” xảy ra \( \Leftrightarrow m =  - 1\,\,\,\left( {tm} \right).\)

Vậy \(m =  - 1\) thỏa mãn điều kiện bài toán.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com