Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(x\) là ẩn
Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 1 = 0\,\,\,\,\,\left( 1 \right)\) (\(x\) là ẩn số, \(m\) là tham số).
Trả lời cho các câu 1, 2 dưới đây:
Giải phương trình \(\left( 1 \right)\) với \(m = 7.\)
Đáp án đúng là: D
Thay giá trị \(m = 7\) vào phương trình, biến đổi đưa phương trình về dạng tích: \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\) sau đó giải từng phương trình từ đó xác định được nghiệm của phương trình ban đầu.
Đáp án cần chọn là: D
Xác định các giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) sao cho biểu thức \(M = x_1^2 + x_2^2 - {x_1}{x_2}\) đạt giá trị nhỏ nhất.
Đáp án đúng là: B
Phương trình ban đầu có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0\), tìm được điều kiện cần
Áp dụng hệ thức Vi – ét, xác định được \({x_1} + {x_2};{x_1}{x_2}\)
Biến đổi biếu thức \(M\) sao cho xuất hiện \({x_1} + {x_2};{x_1}{x_2}\), từ đó xác định được tham số \(m\)
Chú ý: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\)
Đáp án cần chọn là: B
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










