Một đoàn xe nhận chở 480 tấn hàng. Khi sắp khởi hành, đoàn có thêm 3 xe nữa nên mỗi xe chở
Một đoàn xe nhận chở 480 tấn hàng. Khi sắp khởi hành, đoàn có thêm 3 xe nữa nên mỗi xe chở ít hơn 8 tấn so với dự định. Hỏi lúc đầu đoàn xe có bao nhiêu chiếc? Biết rằng các xe chở khối lượng hàng bằng nhau.
Đáp án đúng là: B
Gọi số lúc đầu của đoàn xe là \(x\) (chiếc)
Khi khởi hành, có thêm 3 xe nên số xe lúc sau là:\(x + 3\) (xe).
Xác định được mỗi xe chở được số tấn hàng lúc đầu và lúc khởi hành
Theo giả thiết, lúc sau mỗi xe chở ít hơn 8 tấn hàng so với dự định nên lập được phương trình
Giải phương trình, đối chiếu điều kiện, kết luận.
Gọi số lúc đầu của đoàn xe là \(x\) (chiếc), \(\left( {x \in {\mathbb{N}^*}} \right)\).
Lúc đầu mỗi xe chở số tấn hàng là \(\dfrac{{480}}{x}\) (tấn).
Khi khởi hành, có thêm 3 xe nên số xe lúc sau là:\(x + 3\) (xe).
Lúc đầu mỗi xe chở số tấn hàng là \(\dfrac{{480}}{{x + 3}}\) (tấn).
Vì lúc sau mỗi xe chở ít hơn 8 tấn hàng so với dự định nên ta có phương trình:
\(\begin{array}{l}\,\,\,\,\,\,\dfrac{{480}}{x} - \dfrac{{480}}{{x + 3}} = 8\\ \Leftrightarrow \dfrac{{60}}{x} - \dfrac{{60}}{{x + 3}} = 1\\ \Leftrightarrow 60\left( {x + 3} \right) - 60x = x\left( {x + 3} \right)\\ \Leftrightarrow 60x + 180 - 60x = {x^2} + 3x\\ \Leftrightarrow {x^2} + 3x - 180 = 0\\ \Leftrightarrow {x^2} + 15x - 112x - 180 = 0\\ \Leftrightarrow x\left( {x + 15} \right) - 12\left( {x + 15} \right) = 0\\ \Leftrightarrow \left( {x + 15} \right)\left( {x - 12} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 15 = 0\\x - 12 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 15\,\,\,\left( {tm} \right)\\x = 12\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy lúc đầu đoàn xe có \(12\) chiếc.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com