Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hệ phương trình với tham số \(m:\,\,\left\{ \begin{array}{l}\left( {m + 1} \right)x - y = 3\\mx + y =

Câu hỏi số 421554:
Vận dụng

Cho hệ phương trình với tham số \(m:\,\,\left\{ \begin{array}{l}\left( {m + 1} \right)x - y = 3\\mx + y = m\end{array} \right..\)

Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {{x_0};\,\,{y_0}} \right)\) thỏa mãn \({x_0} + {y_0} > 0.\) 

Đáp án đúng là: D

Quảng cáo

Câu hỏi:421554
Phương pháp giải

Vận dụng phương pháp cộng đại số, xác định được nghiệm của hệ phương trình

Áp dụng điều kiện để hệ phương trình có nghiệm duy nhất, suy ra được điều kiện của tham số \(m\)

Thay nghiệm của hệ vào giả thiết của đề bài, xác định được tham số \(m\)

Đối chiếu điều kiện, kết luận.

Giải chi tiết

Ta có: \(\left\{ \begin{array}{l}\left( {m + 1} \right)x - y = 3\\mx + y = m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right)x - m + mx = 3\\y = m - mx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {2m + 1} \right)x = m + 3\,\,\,\left( * \right)\\y = m - mx\end{array} \right.\)  

Hệ phương trình đã cho có nghiệm duy nhất \( \Leftrightarrow \left( * \right)\) có nghiệm duy nhất \( \Leftrightarrow 2m + 1 \ne 0 \Leftrightarrow m \ne  - \dfrac{1}{2}.\)

Khi đó ta có: \(\left( * \right) \Leftrightarrow x = \dfrac{{m + 3}}{{2m + 1}}\,\,\left( {m \ne  - \dfrac{1}{2}} \right)\)

\(\begin{array}{l} \Rightarrow y = m - mx = m - \dfrac{{m\left( {m + 3} \right)}}{{2m + 1}}\\ \Leftrightarrow y = \dfrac{{2{m^2} + m - {m^2} - 3m}}{{2m + 1}}\\ \Leftrightarrow y = \dfrac{{{m^2} - 2m}}{{2m + 1}}\end{array}\)

\( \Rightarrow \) Với \(m \ne  - \dfrac{1}{2}\) thì hệ phương trình có nghiệm duy nhất \(\left( {{x_0};\,\,{y_0}} \right) = \left( {\dfrac{{m + 3}}{{2m + 1}};\,\,\dfrac{{{m^2} - 2m}}{{2m + 1}}} \right).\)

Theo bài ra ta có: \({x_0} + {y_0} > 0\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{m + 3}}{{2m + 1}} + \dfrac{{{m^2} - 2m}}{{2m + 1}} > 0\\ \Leftrightarrow \dfrac{{{m^2} - m + 3}}{{2m + 1}} > 0\,\,\,\left( 1 \right)\end{array}\)

Vì \({m^2} - m + 3 = {m^2} - 2.\dfrac{1}{2}m + \dfrac{1}{4} + \dfrac{{11}}{4}\) \( = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{{11}}{4} > 0\,\,\forall m\)

\( \Rightarrow \left( 1 \right) \Leftrightarrow 2m + 1 > 0 \Leftrightarrow m >  - \dfrac{1}{2}\)

Kết hợp với điều kiện \(m \ne  - \dfrac{1}{2}\) ta được \(m >  - \dfrac{1}{2}\) thỏa mãn bài toán.

Vậy \(m >  - \dfrac{1}{2}.\)

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com