Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương
Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn hệ thức
\(\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1\)
Đáp án đúng là: A
Để phương trình đã cho có 2 nghiệm phân biệt \({x_1} \ne 1,\,\,{x_2} \ne 1\) thì
\(\left\{ \begin{array}{l}\Delta > 0\\1 + 5 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{5^2} - 4\left( {m - 2} \right) > 0\\m + 4 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}25 - 4m + 8 > 0\\m \ne - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m < 33\\m \ne - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \dfrac{{33}}{4}\\m \ne - 4\end{array} \right.\).
Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 5\\{x_1}{x_2} = m - 2\end{array} \right.\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1 \Leftrightarrow \dfrac{{{{\left( {{x_1} - 1} \right)}^2} + {{\left( {{x_2} - 1} \right)}^2}}}{{{{\left( {{x_1} - 1} \right)}^2}.{{\left( {{x_2} - 1} \right)}^2}}} = 1\\ \Leftrightarrow x_1^2 - 2{x_1} + 1 + x_2^2 - 2{x_2} + 1 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 2 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Rightarrow 25 - 2\left( {m - 2} \right) - 2.\left( { - 5} \right) + 2 = {\left( {m - 2 + 5 + 1} \right)^2}\\ \Leftrightarrow 25 - 2m + 4 + 10 + 2 = {\left( {m + 4} \right)^2}\\ \Leftrightarrow - 2m + 41 = {m^2} + 8m + 16\\ \Leftrightarrow {m^2} + 10m - 25 = 0\,\,\left( * \right)\end{array}\)
Ta có: \({\Delta _m} = {\left( { - 5} \right)^2} - \left( { - 25} \right) = 50 > 0\), do đó phương trình (*) có 2 nghiệm phân biệt
\(\left[ \begin{array}{l}{m_1} = \dfrac{{ - 10 + \sqrt {50} }}{2} = - 5 + 5\sqrt 2 \\{m_1} = \dfrac{{ - 10 - \sqrt {50} }}{2} = - 5 - 5\sqrt 2 \end{array} \right.\,\,\left( {tm} \right)\).
Vậy có hai giá trị của \(m\) thỏa mãn yêu cầu bài toán là \(m = - 5 \pm 5\sqrt 2 \).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com