Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương

Câu hỏi số 422622:
Vận dụng

Cho phương trình \({x^2} + 5x + m - 2 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{x_2}\) thỏa mãn hệ thức

\(\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:422622
Giải chi tiết

Để phương trình đã cho có 2 nghiệm phân biệt \({x_1} \ne 1,\,\,{x_2} \ne 1\) thì

\(\left\{ \begin{array}{l}\Delta  > 0\\1 + 5 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{5^2} - 4\left( {m - 2} \right) > 0\\m + 4 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}25 - 4m + 8 > 0\\m \ne  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m < 33\\m \ne  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \dfrac{{33}}{4}\\m \ne  - 4\end{array} \right.\).

Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 5\\{x_1}{x_2} = m - 2\end{array} \right.\).

Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\dfrac{1}{{{{\left( {{x_1} - 1} \right)}^2}}} + \dfrac{1}{{{{\left( {{x_2} - 1} \right)}^2}}} = 1 \Leftrightarrow \dfrac{{{{\left( {{x_1} - 1} \right)}^2} + {{\left( {{x_2} - 1} \right)}^2}}}{{{{\left( {{x_1} - 1} \right)}^2}.{{\left( {{x_2} - 1} \right)}^2}}} = 1\\ \Leftrightarrow x_1^2 - 2{x_1} + 1 + x_2^2 - 2{x_2} + 1 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 2 = {\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right]^2}\\ \Rightarrow 25 - 2\left( {m - 2} \right) - 2.\left( { - 5} \right) + 2 = {\left( {m - 2 + 5 + 1} \right)^2}\\ \Leftrightarrow 25 - 2m + 4 + 10 + 2 = {\left( {m + 4} \right)^2}\\ \Leftrightarrow  - 2m + 41 = {m^2} + 8m + 16\\ \Leftrightarrow {m^2} + 10m - 25 = 0\,\,\left( * \right)\end{array}\)

Ta có: \({\Delta _m} = {\left( { - 5} \right)^2} - \left( { - 25} \right) = 50 > 0\), do đó phương trình (*) có 2 nghiệm phân biệt

\(\left[ \begin{array}{l}{m_1} = \dfrac{{ - 10 + \sqrt {50} }}{2} =  - 5 + 5\sqrt 2 \\{m_1} = \dfrac{{ - 10 - \sqrt {50} }}{2} =  - 5 - 5\sqrt 2 \end{array} \right.\,\,\left( {tm} \right)\).

Vậy có hai giá trị của \(m\) thỏa mãn yêu cầu bài toán là \(m =  - 5 \pm 5\sqrt 2 \). 

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com