Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 3\) a) Vẽ
Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 3\)
a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một mặt phẳng tọa độ \(Oxy.\)
b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.
Đáp án đúng là: A
a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một mặt phẳng tọa độ \(Oxy.\)
+) Vẽ parabol \(\left( P \right):\,\,y = {x^2}\)
Ta có bảng giá trị:
Vậy \(\left( P \right):\,\,y = {x^2}\) là đường cong đi qua các điểm: \(\left( { - 2;\,\,4} \right),\,\,\left( { - 1;\,\,1} \right),\,\,\left( {0;\,\,0} \right),\,\,\left( {1;\,\,1} \right),\,\,\left( {2;\,\,4} \right).\)
+) Vẽ đường thẳng \(\left( d \right):\,\,y = 2x + 3\).
Ta có bảng giá trị:
Vậy \(\left( d \right):\,\,\,y = 2x + 3\) là đường thẳng đi qua các điểm \(\left( {0;\,\,3} \right)\) và \(\left( { - 1;\,\,1} \right).\)
b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.
Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) ta có:
\(\begin{array}{l}\,\,\,\,\,\,{x^2} = 2x + 3\\ \Leftrightarrow {x^2} - 2x - 3 = 0\\ \Leftrightarrow {x^2} - 3x + x - 3 = 0\\ \Leftrightarrow x\left( {x - 3} \right) + \left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\end{array}\)
+) Với \(x = 3 \Rightarrow y = {3^2} = 9\).
+) Với \(x = - 1 \Rightarrow y = {\left( { - 1} \right)^2} = 1.\)
Vậy \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có tọa độ là \(\left( {3;\,\,9} \right)\) và \(\left( { - 1;\,\,1} \right).\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com