Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình bậc hai \({x^2} - 2x + m - 1 = 0\) (*), với \(m\) là tham số

Cho phương trình bậc hai \({x^2} - 2x + m - 1 = 0\) (*), với \(m\) là tham số

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Tìm tất cả các giá trị của \(m\) để phương trình (*) có nghiệm

Đáp án đúng là: C

Câu hỏi:423285
Giải chi tiết

Xét phương trình \({x^2} - 2x + m - 1 = 0\) (*) có:

\(\Delta ' = {\left( { - 1} \right)^2} - 1.\left( {m - 1} \right) = 2 - m\)

Để phương trình (*) có nghiệm thì \(\left\{ \begin{array}{l}a \ne 0\\\Delta ' \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \ne 0\left( {ld} \right)\\2 - m \ge 0\end{array} \right. \Leftrightarrow m \le 2\)

Vậy với \(m \le 2\) thì phương trình (*) có nghiệm.

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng

Tính theo \(m\) giá trị của biểu thức \(A = x_1^3 + x_2^3\) với \({x_1},{x_2}\) là hai nghiệm của phương trình (*). Tìm giá trị nhỏ nhất của \(A.\)

Đáp án đúng là: B

Câu hỏi:423286
Giải chi tiết

Theo câu a) với \(m \le 2\) thì phương trình (*) có nghiệm \({x_1},{x_2}\)

Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = m - 1\end{array} \right.\)

Xét \(A = x_1^3 + x_2^3\)

\(\begin{array}{l} = x_1^3 + 3x_1^2{x_2} + 3{x_1}x_2^2 + x_2^3 - \left( {3x_1^2{x_2} + 3{x_1}x_2^2} \right)\\ = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)\\ = {2^3} - 3\left( {m - 1} \right).2\\ = 8 - 6\left( {m - 1} \right)\\ = 8 - 6m + 6\\ = 14 - 6m\end{array}\)

Vậy \(A = 14 - 6m\)

Vì \(m \le 2\) nên ta có: \(6m \le 12 \Leftrightarrow 14 - 6m \ge 14 - 12 \Leftrightarrow 14 - 6m \ge 2\)

Dấu “=” xảy ra khi \(m = 2\)

Vậy giá trị nhỏ nhất của A là \(2 \Leftrightarrow m = 2\).

Đáp án cần chọn là: B

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com