Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = {u_n} + 7\) với mọi \(n \ge 1\).

Câu hỏi số 423708:
Nhận biết

Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = {u_n} + 7\) với mọi \(n \ge 1\). Số hạng tổng quát của dãy số \(({u_n})\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:423708
Phương pháp giải

- Nhận biết cấp số cộng.

- SHTQ của CSC có số hạng đầu \({u_1}\), công sai \(d\) là \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Giải chi tiết

Dãy số \(({u_n})\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = {u_n} + 7\) với mọi \(n \ge 1\) là một CSC có \({u_1} = 1\) và  công sai \(d = 7\).

Vậy số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là: \({u_n} = 1 + \left( {n - 1} \right).7 = 7n - 6\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com