Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một sợi dây đàn hồi đủ dài đang có sóng ngang hình sin truyền qua theo chiều dương của trục

Câu hỏi số 423975:
Vận dụng cao

Một sợi dây đàn hồi đủ dài đang có sóng ngang hình sin truyền qua theo chiều dương của trục \(Ox\), với tốc độ là \(48\,\,cm/s\), biên độ sóng là \(A\). Ở thời điểm \(t\), một đoạn của sợi dây và vị trí của ba điểm \(M,\,\,N,\,\,P\) trên đoạn dây này như hình vẽ. Giả sử ở thời điểm \(t + \Delta t\), ba điểm \(M,\,\,N,\,\,P\) thẳng hàng. Giá trị nhỏ nhất của \(\Delta t\) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:423975
Phương pháp giải

Sử dụng kĩ năng đọc đồ thị

Phương trình sóng: \(u = a\cos \left( {\omega t + \varphi  - \dfrac{{2\pi d}}{\lambda }} \right)\)

Sử dụng máy tính bỏ túi trong tổng hợp dao động điều hòa

Sử dụng vòng tròn lượng giác và công thức: \(\Delta t = \dfrac{{\Delta \varphi }}{\omega }\)

Giải chi tiết

Từ đồ thị ta thấy: \(\dfrac{\lambda }{2} = 32 - 8 = 24\left( {cm} \right) \Rightarrow \lambda  = 48\,\,\left( {cm} \right)\)

Chu kì và tần số góc của sóng này là:

\(\left\{ \begin{array}{l}T = \dfrac{\lambda }{v} = \dfrac{{48}}{{48}} = 1\,\,\left( s \right)\\\omega  = \dfrac{{2\pi }}{T} = \dfrac{{2\pi }}{1} = 2\pi \,\,\left( {rad/s} \right)\end{array} \right.\)

Chọn gốc thời gian là thời điểm t

Vật có tọa độ x = 8 cm, qua VTCB theo chiều âm

Ta có: \({u_C} = a\cos \left( {2\pi t + \dfrac{\pi }{2}} \right)\)

\(\begin{array}{l} \Rightarrow {u_M} = a\cos \left( {2\pi t + \dfrac{\pi }{2} - \dfrac{{2\pi .\left( {12 - 8} \right)}}{{48}}} \right) = a\cos \left( {2\pi t + \dfrac{\pi }{3}} \right)\,\,\left( {cm} \right)\\{u_N} = a\cos \left( {2\pi t + \dfrac{\pi }{2} - \dfrac{{2\pi .\left( {24 - 8} \right)}}{{48}}} \right) = a\cos \left( {2\pi t - \dfrac{\pi }{6}} \right)\,\,\left( {cm} \right)\\{u_P} = a\cos \left( {2\pi t + \dfrac{\pi }{2} - \dfrac{{2\pi \left( {48 - 8} \right)}}{{48}}} \right) = a\cos \left( {2\pi t - \dfrac{{7\pi }}{6}} \right)\,\,\left( {cm} \right)\end{array}\)

Từ đồ thị, ta có tọa độ của M, N, P là:

\(M\left( {12;{u_M}} \right);N\left( {24;{u_N}} \right);P\left( {48;{u_P}} \right)\)

3 điểm M, N, P thẳng hàng, ta có: \(\overrightarrow {MN}  = k\overrightarrow {MP} \)

\(\begin{array}{l}\left\{ \begin{array}{l}\overrightarrow {MN}  = \left( {12;{u_N} - {u_M}} \right)\\\overrightarrow {MP}  = \left( {36;{u_P} - {u_M}} \right)\end{array} \right. \Rightarrow \dfrac{{12}}{{36}} = \dfrac{{{u_N} - {u_M}}}{{{u_P} - {u_M}}} = \dfrac{1}{3}\\ \Rightarrow 3{u_N} - 3{u_M} = {u_P} - {u_M} \Rightarrow 3{u_N} - 2{u_M} - {u_P} = 0\\ \Rightarrow 3.\left( {a\angle \dfrac{{ - \pi }}{6}} \right) - 2.\left( {a\angle \dfrac{\pi }{3}} \right) - \left( {a\angle \dfrac{{ - 7\pi }}{6}} \right) = 0\end{array}\)

Chuẩn hóa a = 1, sử dụng máy tính bỏ túi, ta có: \(2\sqrt 5 \angle  - 0,987 = 0\)

Ta có vòng tròn lượng giác:

Từ vòng tròn lượng giác, ta thấy:

\(\alpha  = 0,987 + \dfrac{\pi }{2} = 2,558\,\,\left( {rad} \right) \Rightarrow \Delta t = \dfrac{\alpha }{\omega } = \dfrac{{2,588}}{{2\pi }} = 0,407\,\,\left( s \right)\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com