Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đặt điện áp xoay chiều \(u = {U_0}\cos \omega t\) (\({U_0}\) và \(\omega \) có giá trị dương, không

Câu hỏi số 423976:
Vận dụng cao

Đặt điện áp xoay chiều \(u = {U_0}\cos \omega t\) (\({U_0}\) và \(\omega \) có giá trị dương, không đổi) vào hai đầu đoạn mạch AB như hình bên, trong đó tụ điện có điện dung \(C\) thay đổi được. Biết \(R = 5r\), cảm kháng của cuộn dây \({Z_L} = 4r\) và \(LC{\omega ^2} > 1\). Khi \(C = {C_0}\) và khi \(C = 0,5{C_0}\) thì điện áp giữa hai đầu \(M,\,\,B\) có biểu thức tương ứng là \({u_1} = {U_{01}}\cos \left( {\omega t + \varphi } \right)\) và \({u_2} = {U_{02}}\cos \left( {\omega t + \varphi } \right)\) (\({U_{01}}\) và \({U_{02}}\) có giá trị dương). Giá trị của \(\varphi \) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:423976
Phương pháp giải

Sử dụng phương pháp chuẩn hóa số liệu

Độ lệch pha giữa điện áp và cường độ dòng điện: \(\tan \varphi  = \dfrac{{{Z_L} - {Z_C}}}{{R + r}}\)

Công thức lượng giác: \(\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)

Giải chi tiết

Chuẩn hóa \(r = 1 \Rightarrow \left\{ \begin{array}{l}R = 5\\{Z_L} = 4\end{array} \right.\)

Khi \(C = {C_0} \Rightarrow {Z_{{C_1}}} = {Z_{{C_0}}}\)

Khi \(C = 0,5{C_0} \Rightarrow {Z_{{C_2}}} = 2{Z_{{C_0}}}\)

Ta có: \(LC{\omega ^2} > 1 \Rightarrow L\omega  > \dfrac{1}{{\omega C}} \Rightarrow {Z_L} > {Z_C}\)

Độ lệch pha giữa điện áp hai đầu đoạn mạch MB và điện áp hai đầu đoạn mạch là:

\(\begin{array}{l}\varphi  = {\varphi _{MB}} - {\varphi _u} \Rightarrow \tan \varphi  = \tan \left( {{\varphi _{MB}} - {\varphi _u}} \right)\\ \Rightarrow \tan \varphi  = a = \dfrac{{\tan {\varphi _{MB}} - \tan {\varphi _u}}}{{1 + \tan {\varphi _{MB}}.\tan {\varphi _u}}}\\ \Rightarrow \dfrac{{\dfrac{{{Z_L} - {Z_C}}}{r} - \dfrac{{{Z_L} - {Z_C}}}{{R + r}}}}{{1 + \dfrac{{{Z_L} - {Z_C}}}{r}.\dfrac{{{Z_L} - {Z_C}}}{{R + r}}}} = a\\ \Rightarrow \dfrac{{R.\left( {{Z_L} - {Z_C}} \right)}}{{r.\left( {R + r} \right) + {{\left( {{Z_L} - {Z_C}} \right)}^2}}} = a\\ \Rightarrow a.{\left( {{Z_L} - {Z_C}} \right)^2} - R.\left( {{Z_L} - {Z_C}} \right) + a.r\left( {R + r} \right) = 0\end{array}\)

Với hai giá trị của C, ta có \(\varphi \) không đổi

Đặt \(x = {Z_L} - {Z_C} \Rightarrow a.{x^2} - R.x + a.r\left( {R + r} \right) = 0\)

Áp dụng định lí Vi – et, ta có: \(\left\{ \begin{array}{l}{x_1}{x_2} = r.\left( {R + r} \right)\,\,\left( 1 \right)\\{x_1} + {x_2} = \dfrac{R}{a}\,\,\left( 2 \right)\end{array} \right.\)

Từ (1) ta có: \(\left( {{Z_L} - {Z_{{C_1}}}} \right).\left( {{Z_L} - {Z_{{C_2}}}} \right) = r.\left( {R + r} \right)\)

\( \Rightarrow \left( {4 - {Z_{{C_0}}}} \right).\left( {4 - 2{Z_{{C_0}}}} \right) = 1.\left( {5 + 1} \right) \Rightarrow \left[ \begin{array}{l}{Z_{{C_0}}} = 5\,\,\left( {loai} \right)\\{Z_{{C_0}}} = 1\,\,\left( {t/m} \right)\end{array} \right.\)

Thay vào (2) ta có: \(\left( {{Z_L} - {Z_{{C_0}}}} \right) + \left( {{Z_L} - 2{Z_{{C_0}}}} \right) = \dfrac{R}{a} \Rightarrow a = 1\)

\( \Rightarrow \tan \varphi  = 1 \Rightarrow \varphi  = 0,785 \approx 0,79\,\,\left( {rad} \right)\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com