Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Rút gọn biểu thức: \(A = {\left( {x + 1} \right)^2} + {\left( {x - 1} \right)^2} - \left( {x - 1} \right)\left(

Câu hỏi số 434303:
Vận dụng

Rút gọn biểu thức: \(A = {\left( {x + 1} \right)^2} + {\left( {x - 1} \right)^2} - \left( {x - 1} \right)\left( {x + 1} \right).\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:434303
Phương pháp giải

Áp dụng hằng đẳng thức để rút gọn biểu thức.

Giải chi tiết

\(\begin{array}{l}A = {\left( {x + 1} \right)^2} + {\left( {x - 1} \right)^2} - \left( {x - 1} \right)\left( {x + 1} \right)\\\,\,\,\,\, = \left( {{x^2} + 2x + 1} \right) + \left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 1} \right)\\\,\,\,\,\, = {x^2} + 2x + 1 + {x^2} - 2x + 1 - {x^2} + 1\\\,\,\,\,\, = {x^2} + 3\end{array}\)

Vậy \(A = {x^2} + 3\).

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com