Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm các số \(a,b,c \in \mathbb{Q}\) biết \({a^2} + {b^2} + {c^2} = ab + bc + ac\) và \(a + b + c = 2019\).

Câu hỏi số 434313:
Vận dụng cao

Tìm các số \(a,b,c \in \mathbb{Q}\) biết \({a^2} + {b^2} + {c^2} = ab + bc + ac\) và \(a + b + c = 2019\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:434313
Phương pháp giải

Đưa về dạng biểu thức đa cho về dạng \({A^2} + {B^2} + {C^2} = 0 \Rightarrow A = B = C = 0\).

Giải chi tiết

Theo giả thiết, ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,{a^2} + {b^2} + {c^2} = ab + bc + ac\\ \Leftrightarrow 2\left( {{a^2} + {b^2} + {c^2}} \right) = 2\left( {ab + bc + ac} \right)\\ \Leftrightarrow 2{a^2} + 2{b^2} + 2{c^2} = 2ab + 2bc + 2ac\\ \Leftrightarrow 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ac = 0\\ \Leftrightarrow {a^2} - 2ab + {b^2} + {a^2} - 2ac + {c^2} + {b^2} - 2bc + {c^2} = 0\\ \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {a - c} \right)^2} + {\left( {b - c} \right)^2} = 0\\ \Leftrightarrow \left\{ \begin{array}{l}a - b = 0\\a - c = 0\\b - c = 0\end{array} \right. \Rightarrow a = b = c\end{array}\)

Ta lại có: \(a + b + c = 2019 \Rightarrow a = b = c = \dfrac{{2019}}{3}\).

Vậy \(a = b = c = \dfrac{{2019}}{3}\).

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com