Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chứng minh giá trị của biểu thức \(A = {x^2} - 6x + 14\) luôn dương với mọi giá trị  

Câu hỏi số 434323:
Vận dụng

Chứng minh giá trị của biểu thức \(A = {x^2} - 6x + 14\) luôn dương với mọi giá trị  

Quảng cáo

Câu hỏi:434323
Phương pháp giải

Nhóm hạng tử và dùng hằng đẳng thức để đưa biểu thức đã cho về dạng \(A{\left( x \right)^2} + a > 0\) với mọi \(x\) và \(a > 0\) là hằng số.

Giải chi tiết

Ta có: \(A = {x^2} - 6x + 14\)\( = {x^2} - 6x + 9 + 5\)\( = {\left( {x - 3} \right)^2} + 5\)

Vì \({\left( {x - 3} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\( \Rightarrow {\left( {x - 3} \right)^2} + 5 \ge 5\) với mọi \(x \in \mathbb{R}\)

\( \Rightarrow A \ge 5 > 0\) với mọi \(x \in \mathbb{R}\)

Vậy giá trị của biểu thức \(A = {x^2} - 6x + 14\) luôn dương với mọi giá trị của biến \(x\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com