Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(x,\,\,y\) là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau: \(P = {x^2} + 5{y^2}

Câu hỏi số 434384:
Vận dụng cao

Cho \(x,\,\,y\) là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:

\(P = {x^2} + 5{y^2} + 4xy + 6x + 16y + 32\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:434384
Phương pháp giải

Áp dụng phương pháp nhóm, dùng hằng đẳng thức để đưa đa thức đã cho về dạng \(P = {A^2} + {B^2} + a\). Trong đó, \(A,\,\,B\) là các đa thức và \(a\) là hằng số.

Giải chi tiết

\(\begin{array}{l}\,\,\,\,\,\,P = {x^2} + 5{y^2} + 4xy + 6x + 16y + 32\\ \Leftrightarrow P = {x^2} + \left( {4xy + 6x} \right) + 5{y^2} + 16y + 32\\ \Leftrightarrow P = {x^2} + 2x\left( {2y + 3} \right) + {\left( {2y + 3} \right)^2} - {\left( {2y + 3} \right)^2} + 5{y^2} + 16y + 32\\ \Leftrightarrow P = {\left[ {x + \left( {2y + 3} \right)} \right]^2} - 4{y^2} - 12y - 9 + 5{y^2} + 16y + 32\\ \Leftrightarrow P = {\left( {x + 2y + 3} \right)^2} + {y^2} + 4y + 23\\ \Leftrightarrow P = {\left( {x + 2y + 3} \right)^2} + {\left( {y + 2} \right)^2} + 19\end{array}\)

Vì \({\left( {x + 2y + 3} \right)^2} \ge 0\) với mọi \(x,\,\,y \in \mathbb{R}\).

     \({\left( {y + 2} \right)^2} \ge 0\) với mọi \(y \in \mathbb{R}\)

\( \Rightarrow P = {\left( {x + 2y + 3} \right)^2} + {\left( {y + 2} \right)^2} + 19 \ge 19\) với mọi \(x,\,\,y \in \mathbb{R}\).

Dấu “\( = \)” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}x + 2y + 3 = 0\\y + 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x + 2y =  - 3\\y =  - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 2\end{array} \right.\)  

Vậy \(P\) đạt giá trị nhỏ nhất bằng \(19\) khi \(x = 1\) và \(y =  - 2\).

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com