Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ tam giác đều \(ABC.A'B'C'\)  có \(AB = a\), \(AA' = a\sqrt 2 .\) Khoảng cách giữa A'B và

Câu hỏi số 434655:
Thông hiểu

Cho lăng trụ tam giác đều \(ABC.A'B'C'\)  có \(AB = a\), \(AA' = a\sqrt 2 .\) Khoảng cách giữa A'B và CC' bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:434655
Phương pháp giải

Sử dụng khoảng cách giữa hai đường thẳng \(d\left( {a;b} \right) = d\left( {a;\left( P \right)} \right) = d\left( {M;\left( P \right)} \right)\)  với \(a//\left( P \right);b \subset \left( P \right);{\mkern 1mu} M \in a\)

Và \(d\left( {M;\left( P \right)} \right) = MH\) với \(H\) là hình chiếu của \(M\)xuống mặt phẳng \(\left( P \right).\)

Giải chi tiết

Ta có \(CC'//AA' \Rightarrow CC'//\left( {ABB'A'} \right)\)

Nên \(d\left( {CC';AB'} \right) = d\left( {CC';\left( {ABB'A'} \right)} \right) = d\left( {C;\left( {ABB'A'} \right)} \right)\)

Lấy \(H\) là trung điểm của AB

Khi đó \(CH \bot AB\) (do tam giác ABC đều)

Lại có \(AA' \bot CH\left( {do{\mkern 1mu} AA' \bot \left( {ABC} \right)} \right)\)

Nên \(CH \bot \left( {ABB'A'} \right)\) tại \(H \Rightarrow d\left( {C;\left( {ABB'A'} \right)} \right) = CH\)

Ta có \(CH = \dfrac{{a\sqrt 3 }}{2}\) (đường trung tuyến trong tam giác đều cạnh \(a\) )

Vậy \(d\left( {AB';CC'} \right) = \dfrac{{a\sqrt 3 }}{2}.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com