Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGTD Bách Khoa và TN THPT - Ngày 10-11/01/2026
↪ ĐGTD Bách Khoa (TSA) - Trạm 5 ↪ TN THPT - Trạm 2
Giỏ hàng của tôi

Cho hình lục giác đều \(ABCDEF\) nội tiếp đường tròn tâm \(O\). Hỏi có bao nhiêu phép quay tâm

Câu hỏi số 435826:
Thông hiểu

Cho hình lục giác đều \(ABCDEF\) nội tiếp đường tròn tâm \(O\). Hỏi có bao nhiêu phép quay tâm \(O\) góc quay \(\alpha \), \(0 < \alpha  \le 2\pi \) biến lục giác đều \(ABCDEF\) thành chính nó?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:435826
Phương pháp giải

Vẽ hình và đếm.

Giải chi tiết

Vì \(ABCDEF\) là lục giác đều tâm \(O\) nên \(\angle AOB = \angle BOC = \angle COD = \angle DOE = \angle EOF = \angle FOA = \dfrac{{{{360}^0}}}{6} = {60^0}\).

Ta có:

\(\left\{ \begin{array}{l}{Q_{\left( {O;{{60}^0}} \right)}}\left( A \right) = B\\{Q_{\left( {O;{{60}^0}} \right)}}\left( B \right) = C\\{Q_{\left( {O;{{60}^0}} \right)}}\left( C \right) = D\\{Q_{\left( {O;{{60}^0}} \right)}}\left( D \right) = E\\{Q_{\left( {O;{{60}^0}} \right)}}\left( E \right) = F\\{Q_{\left( {O;{{60}^0}} \right)}}\left( F \right) = A\end{array} \right. \Rightarrow {Q_{\left( {O;{{60}^0}} \right)}}\left( {ABCDEF} \right) = BCDEFA\).

Tương tự với các góc quay \({120^0},\,\,{180^0},\,\,{240^0},\,\,{300^0},\,\,{360^0}\) cũng biến lục giác đều \(ABCDEF\) thành chính nó.

Vậy có 6 phép quay thỏa mãn.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com