Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số

Câu hỏi số 439330:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên.

Số nghiệm thực của phương trình \(f\left( {{x^2}f\left( x \right)} \right) = 2\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:439330
Phương pháp giải

Số nghiệm của phương trình \(f\left( {{x^2}f\left( x \right)} \right) = 2\) là số giao điểm của đồ thị hàm số \(y = f\left( {{x^2}f\left( x \right)} \right)\) và đường thẳng \(y = 2.\)

Giải chi tiết

Ta có: \(f\left( {{x^2}f\left( x \right)} \right) = 2\) \( \Leftrightarrow \left[ \begin{array}{l}{x^2}f\left( x \right) = 0\\{x^2}f\left( x \right) = {x_1} < 0\\{x^2}f\left( x \right) = {x_2} < 0\\{x^2}f\left( x \right) = {x_3} < 0\end{array} \right.\)

Xét phương trình: \({x^2}f\left( x \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\f\left( x \right) = 0\end{array} \right.\)

Dựa vào đồ thị hàm số ta thấy đồ thị hàm số \(y = f\left( x \right)\) cắt trục \(Ox\) tại hai điểm phân biệt

\( \Rightarrow f\left( x \right) = 0\) có hai nghiệm phân biệt khác \(0.\)

\( \Rightarrow {x^2}f\left( x \right) = 0\) có ba nghiệm phân biệt.

Xét phương trình \({x^2}f\left( x \right) = {x_1} < 0\,\,\,\,\left( * \right)\)

Ta có: \({x^2} \ge 0\) và \(x = 0\) không là nghiệm của \(\left( * \right)\)

\( \Rightarrow f\left( x \right) = \dfrac{{{x_1}}}{{{x^2}}} < 0\)

Xét hàm số \(g\left( x \right) = \dfrac{{{x_1}}}{{{x^2}}}\) \( \Rightarrow g'\left( x \right) =  - \dfrac{{2a}}{{{x^3}}}\)

Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy với \(f\left( x \right) < 0\)\( \Rightarrow f\left( x \right) = \dfrac{{{x_1}}}{{{x^2}}}\) có 2 nghiệm phân biệt.

Tương tự với phương trình \({x^2}f\left( x \right) = {x_2}\) và \({x^2}f\left( x \right) = {x_3}\) với \({x_1},\,\,{x_2} < 0\) ta được mỗi phương trình có hai nghiệm phân biệt.

Vậy phương trình \(f\left( {{x^2}f\left( x \right)} \right) = 2\) có \(9\) nghiệm phân biệt.

Chọn D. 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com