Cho hàm số \(y = {x^4} - 2{x^2}\) có đồ thị \(\left( S \right)\). Gọi \(A,\,\,B,\,\,C\) là các điểm
Cho hàm số \(y = {x^4} - 2{x^2}\) có đồ thị \(\left( S \right)\). Gọi \(A,\,\,B,\,\,C\) là các điểm phân biệt trên \(\left( S \right)\) có tiếp tuyến với \(\left( S \right)\) tại các điểm đó song song với nhau. Biết \(A,\,\,B,\,\,C\) cùng nằm trên một parabol \(\left( P \right)\) có đỉnh \(I\left( {\frac{1}{6};{y_0}} \right)\). Tìm \({y_0}\).
Đáp án đúng là: C
Quảng cáo
- Vì tiếp tuyến của \(\left( S \right)\) tại \(A,\,\,B,\,\,C\) song song với nhau, nên 3 tiếp tuyến này có hệ số góc bằng nhau. Gọi hệ số góc của các tiếp tuyến đi qua \(A,\,\,B\,,\,\,C\) là \(k\), từ đó suy ra \(k = f'\left( x \right)\).
- Biến đổi hàm số ban đầu theo \(k\), từ đó suy ra dạng của \(\left( P \right)\) theo \(k\).
- Parabol \(\left( P \right):\,\,y = a{x^2} + bx + c\) có hoành độ đỉnh là \(x = - \frac{b}{{2a}}\), từ đó giải phương trình tìm \(k\).
- Thay vào tìm hàm số của parabol \(\left( P \right)\), thay \({x_0} = \frac{1}{6}\) tìm \({y_0}\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












