Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm thỏa mãn \(f'\left( x
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm thỏa mãn \(f'\left( x \right) = \left( {4 - {x^2}} \right)g\left( x \right) + 2019\) với \(g\left( x \right) < 0,\,\,\forall x \in \mathbb{R}\). Hàm số \(y = f\left( {1 - x} \right) + 2019x + 2020\) nghịch biến trên khoảng nào trong các khoảng sau?
Đáp án đúng là: C
Quảng cáo
- Tính đạo hàm của hàm số \(y = f\left( {1 - x} \right) + 2019x + 2020\).
- Đặt \(1 - x = t\), biểu diễn \(y'\) theo \(t\).
- Giải bất phương trình \(y' < 0\) và suy ra các khoảng nghịch biến của hàm số.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












