Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {3x - 2} \right) > {\log

Câu hỏi số 444453:
Thông hiểu

Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {3x - 2} \right) > {\log _{\frac{1}{2}}}\left( {4 - x} \right)\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:444453
Phương pháp giải

Giải bất phương trình dạng \({\log _a}f\left( x \right) > {\log _a}g\left( x \right) \Leftrightarrow 0 < f\left( x \right) < g\left( x \right)\)  (với \(0 < a < 1\))

Giải chi tiết

Ta có: \({\log _{\frac{1}{2}}}\left( {3x - 2} \right) > {\log _{\frac{1}{2}}}\left( {4 - x} \right)\)

\( \Leftrightarrow 0 < 3x - 2 < 4 - x \Leftrightarrow \left\{ \begin{array}{l}3x - 2 > 0\\4x < 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \frac{2}{3}\\x < \frac{3}{2}\end{array} \right.\).

Vậy tập nghiệm của bất phương trình \(S = \left( {\frac{2}{3};\frac{3}{2}} \right).\)

Chú ý khi giải

Khi giải phương trình hoặc bất phương trình lôgarit cần phải đặc biệt chú ý đến điều kiện xác định của phương trình.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com