Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - 2}

Câu hỏi số 444454:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right){\left( {x - 3} \right)^4}.\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:444454
Phương pháp giải

Số điểm cực trị của hàm số \(y = f\left( x \right)\) có \(f'\left( x \right)\) là đa thức là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\).

Giải chi tiết

Xét \(f'\left( x \right) = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right){\left( {x - 3} \right)^4} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\\x = 3\end{array} \right.\).

Trong các nghiệm trên có \(x = 3\) là nghiệm bội chẵn nên không phải cực trị.

Vậy hàm số \(y = f\left( x \right)\) có hai điểm cực trị \(x = 1,\,\,x = 2\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com