Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết đồ thị của hàm số \(y = \frac{{(2m - 1)x + 3}}{{x - m + 1}}\) (\(m\) là tham số) có hai đường

Câu hỏi số 444539:
Vận dụng

Biết đồ thị của hàm số \(y = \frac{{(2m - 1)x + 3}}{{x - m + 1}}\) (\(m\) là tham số) có hai đường tiệm cận. Gọi I là giao điểm của hai đường tiệm cận và \(A(4;7)\). Tổng của tất cả các giá trị của tham số \(m\) sao cho \(AI = 5\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:444539
Phương pháp giải

- Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có \(y = \frac{a}{c}\) là đường tiệm cận ngang và \(x =  - \frac{d}{c}\) làm tiệm cận đứng.

- Từ đó sử dụng \(AI = \sqrt {{{\left( {{x_I} - {x_A}} \right)}^2} + {{\left( {{y_I} - {y_A}} \right)}^2}} \) để tìm \(m\).

Giải chi tiết

Điều kiện: \(x \ne m - 1\).

Để đồ thị hàm số có tiệm cận thì \(\left( {2m - 1} \right)\left( { - m + 1} \right) - 3 \ne 0 \Leftrightarrow  - 2{m^2} + 3m - 4 \ne 0\) (luôn đúng).

Ta có:

Đường thẳng \(x = m - 1\) là tiệm cận đứng của đồ thị hàm số.

Đường thẳng \(y = 2m - 1\) là tiệm cận ngang của đồ thị hàm số.

Suy ra, giao điểm của hai tiệm cận là \(I\left( {m - 1;2m - 1} \right)\).

Theo bài ra ta có

\(\begin{array}{l}\,\,\,\,\,\,AI = 5 \Rightarrow A{I^2} = 25\\ \Leftrightarrow {\left( {m - 1 - 4} \right)^2} + {\left( {2m - 1 - 7} \right)^2} = 25\\ \Leftrightarrow {\left( {m - 5} \right)^2} + {\left( {2m - 8} \right)^2} = 25\\ \Leftrightarrow 5{m^2} - 42m + 64 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \frac{{32}}{5}\\m = 2\end{array} \right.\end{array}\)

Vậy tổng các giá trị của \(m\) thỏa mãn là \(2 + \frac{{32}}{5} = \frac{{42}}{5}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com