Biết giá trị lớn nhất của hàm số \(y = - {x^2} + 4x - m\) trên đoạn \(\left[ { - 1;3} \right]\)
Biết giá trị lớn nhất của hàm số \(y = - {x^2} + 4x - m\) trên đoạn \(\left[ { - 1;3} \right]\) bằng \(10\). Giá trị của tham số \(m\) là
Đáp án đúng là: A
Quảng cáo
- Tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right] \subset D\) theo \(m\).
+ Tính \(f'\left( x \right)\), giải phương trình \(f'\left( x \right) = 0\) tìm được các nghiệm \({x_i} \in \left[ {a;b} \right]\) và các giá trị \({x_j}\) làm cho \(f'\left( x \right)\) không xác định
+ Tính \(f\left( {{x_i}} \right),f\left( {{x_j}} \right),f\left( a \right),f\left( b \right)\)
+ Khi đó \(\mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right) = \max \left\{ {f\left( {{x_i}} \right),f\left( {{x_j}} \right),f\left( a \right),f\left( b \right)} \right\}\) và \(\mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right) = \min \left\{ {f\left( {{x_i}} \right),f\left( {{x_j}} \right),f\left( a \right),f\left( b \right)} \right\}\).
- Giải phương trình \(\mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = 10\) tìm \(m\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












