Số nghiệm của phương trình \({\log _{2021}}x + {\log _{2020}}x = 0\) là:
Số nghiệm của phương trình \({\log _{2021}}x + {\log _{2020}}x = 0\) là:
Đáp án đúng là: C
Quảng cáo
- Chuyển vế, đưa về cùng cơ số.
- Sử dụng công thức đổi cơ số: \({\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\,\,\left( {0 < a,\,\,c \ne 1,\,\,b > 0} \right)\).
- Đưa phương trình đã cho về dạng tích.
- Giải phương trình lôgarit \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right) > 0\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












