Cho các vecto \(\vec a\) và \(\vec b\) thỏa mãn \(\left| {\vec a} \right| = 2\), \(\left| {\vec b} \right| = 1\)
Cho các vecto \(\vec a\) và \(\vec b\) thỏa mãn \(\left| {\vec a} \right| = 2\), \(\left| {\vec b} \right| = 1\) và \(\left( {\vec a,\,\,\vec b} \right) = {60^0}\). Tính góc giữa vecto \(\vec a\) và vecto \(\vec c = \vec a - \vec b\).
Đáp án đúng là: A
Quảng cáo
+ Xác định \(\vec c\) và \(\left| {\vec c} \right|\). Tính \(\vec a.\vec c\).
+ Áp dụng công thức \(\cos \left( {\vec a,\,\,\vec c} \right) = \dfrac{{\vec a\,.\,\,\vec c}}{{\left| {\vec a} \right|\,.\,\,\left| {\vec c} \right|}}\) để tìm \(\left( {\vec a,\,\,\vec c} \right)\).
Đáp án cần chọn là: A
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












