Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_n} = \dfrac{{2n + 1}}{{n + 1}},\,\,\forall n \ge 1\). Khẳng định nào sau đây là sai?
Câu 452658: Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_n} = \dfrac{{2n + 1}}{{n + 1}},\,\,\forall n \ge 1\). Khẳng định nào sau đây là sai?
A. \(\left( {{u_n}} \right)\)là dãy số bị chặn dưới
B. \({u_5} = \dfrac{{11}}{6}\)
C. \(\left( {{u_n}} \right)\)là dãy giảm
D. \(\left( {{u_n}} \right)\)là dãy tăng và bị chặn
Phương pháp giải:
Xét hiệu \(H = {u_{n + 1}} - {u_n}\).
+ Nếu \(H > 0\,\,\forall n \ge 1\) thì dãy \(\left( {{u_n}} \right)\) là dãy số tăng.
+ Nếu \(H < 0\,\,\forall n \ge 1\) thì dãy \(\left( {{u_n}} \right)\) là dãy số giảm.
-
Đáp án : C(0) bình luận (0) lời giải
Giải chi tiết:
Xét hiệu
\(\begin{array}{l}H = {u_{n + 1}} - {u_n},\,\,\forall n \ge 1\\\,\,\,\,\,\, = \dfrac{{2\left( {n + 1} \right) + 1}}{{n + 1 + 1}} - \dfrac{{2n + 1}}{{n + 1}}\\\,\,\,\,\,\, = \dfrac{{2n + 3}}{{n + 2}} - \dfrac{{2n + 1}}{{n + 1}}\\\,\,\,\,\,\, = \dfrac{{\left( {2n + 3} \right)\left( {n + 1} \right) - \left( {2n + 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\\,\,\,\,\,\, = \dfrac{{2{n^2} + 5n + 3 - 2{n^2} - 5n - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\\,\,\,\,\,\, = \dfrac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0\,\,\forall n \ge 1\end{array}\)
Do đó dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Vậy đáp án sai là C.
Chọn C.
Lời giải sai Bình thường Khá hay Rất Hay
Hỗ trợ - Hướng dẫn

-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com