Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đồ thị của hàm số \(f\left( x \right)\) trên khoảng \(\left( {a;\,\,b} \right)\). Biết rằng tiếp

Câu hỏi số 452961:
Thông hiểu

Cho đồ thị của hàm số \(f\left( x \right)\) trên khoảng \(\left( {a;\,\,b} \right)\). Biết rằng tiếp tuyến của đồ thị hàm số \(f\left( x \right)\) tại các điểm \({M_1};\,\,{M_2};\,\,{M_3}\) như hình vẽ.

Khi đó xét dấu \(f'\left( {{x_1}} \right)\,,f'\left( {{x_2}} \right)\,,f'\left( {{x_3}} \right)\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:452961
Phương pháp giải

Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x = {x_0}\) là \(k = f'\left( {{x_0}} \right)\).

Giải chi tiết

- Tiếp tuyến tại \({M_1}\) là đường thẳng nghịch biến trên \(\mathbb{R}\) nên \(f'\left( {{x_1}} \right) < 0\).

- Tiếp tuyến tại \({M_2}\) là đường thẳng song song với trục hoành nên \(f'\left( {{x_2}} \right) = 0\).

- Tiếp tuyến tại \({M_3}\) là đường thẳng đồng biến trên \(\mathbb{R}\) nên \(f'\left( {{x_3}} \right) > 0\).

Vậy \(f'\left( {{x_1}} \right) < 0,\,\,\,f'\left( {{x_2}} \right) = 0,\,\,f'\left( {{x_3}} \right) > 0\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com