Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\sqrt 2 .\) Cạnh bên \(SA\) vuông góc
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\sqrt 2 .\) Cạnh bên \(SA\) vuông góc với đáy. Góc giữa \(SC\) và mặt phẳng đáy bằng \({45^0}.\) Gọi \(E\) là trung điểm của \(BC.\) Tính khoảng cách giữa hai đường thẳng \(DE\) và \(SC.\)
Đáp án đúng là: A
Quảng cáo
- Xác định mặt phẳng \(\left( P \right)\) chứa \(DE\) và song song với \(SC\), khi đó \(d\left( {DE;SC} \right) = d\left( {SC;\left( P \right)} \right)\).
- Đổi sang \(d\left( {A;\left( P \right)} \right)\). Dựng khoảng cách.
- Xác định góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.
- Sử dụng hệ thức lượng trong tam giác vuông, định lí Pytago, diện tích … để tính khoảng cách.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













