Cho \(\left( {O;\,\,R} \right)\), \(MN\) là dây không đi qua tâm. \(C,\,\,D\) là hai điểm bất kì thuộc
Cho \(\left( {O;\,\,R} \right)\), \(MN\) là dây không đi qua tâm. \(C,\,\,D\) là hai điểm bất kì thuộc dây \(MN\) (\(C,\,\,D\) không trùng với \(M,\,\,N\)). \(A\) là điểm chính giữa của cung nhỏ \(MN\). Các đường thẳng \(AC\) và \(AD\) lần lượt cắt \(\left( O \right)\) tại điểm thứ hai là \(E,\,\,F\).
a) Chứng minh \(\angle ACD = \angle AFE\) và tứ giác \(CDFE\) nội tiếp.
b) Chứng minh \(A{M^2} = AC.AE\).
c) Kẻ đường kính \(AB\). Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(MCE\). Chứng minh \(M,\,\,I,\,\,B\) thẳng hàng.
Quảng cáo
a) Chứng minh tứ giác nội tiếp bằng cách áp dụng dấu hiệu nhận biết.
b) Chứng minh hai tam giác đồng dạng theo trường hợp góc – góc.
c) Chứng minh \(AM \bot MI\) và \(AM \bot MB\) tại \(M\). Từ đó suy ra ba điểm \(M,\,\,I,\,\,B\) thẳng hàng.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










