Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai số thực \(x,\,\,y\) thỏa mãn \(x{}^2 + {y^2} = x + y + xy\). Đặt \(S = x + y\). Khẳng định nào

Câu hỏi số 461736:
Thông hiểu

Cho hai số thực \(x,\,\,y\) thỏa mãn \(x{}^2 + {y^2} = x + y + xy\). Đặt \(S = x + y\). Khẳng định nào sau đây là đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:461736
Phương pháp giải

Sử dụng bất đẳng thức \({x^2} + {y^2} \ge 2xy\) và \(xy \le \dfrac{{{{\left( {x + y} \right)}^2}}}{4}\).

Giải chi tiết

\(\begin{array}{l}{\left( {x - y} \right)^2} \ge 0\\ \Leftrightarrow {x^2} + {y^2} - 2xy \ge 0\\ \Leftrightarrow {x^2} + {y^2} \ge 2xy\end{array}\)

\({\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} \ge 4xy\)\( \Rightarrow xy \le \dfrac{{{{\left( {x + y} \right)}^2}}}{4}\)

Theo đề bài, ta có:

\(\begin{array}{l}x{}^2 + {y^2} = x + y + xy\\ \Leftrightarrow x + y = {\left( {x + y} \right)^2} - 3xy \ge {\left( {x + y} \right)^2} - \dfrac{{3{{\left( {x + y} \right)}^2}}}{4}\\ \Leftrightarrow x + y \ge \dfrac{1}{4}{\left( {x + y} \right)^2}\\ \Leftrightarrow 4\left( {x + y} \right) \ge {\left( {x + y} \right)^2}\\ \Leftrightarrow {\left( {x + y} \right)^2} - 4\left( {x + y} \right) \le 0\\ \Leftrightarrow \left( {x + y} \right)\left( {x + y - 4} \right) \le 0\\ \Leftrightarrow 0 \le x + y \le 4\\ \Leftrightarrow 0 \le S \le 4\end{array}\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com