Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 5;5} \right]\) để phương trình \(\log _2^3\left( {f\left( x \right) + 1} \right) - \log _{\sqrt 2 }^2\left( {f\left( x \right) + 1} \right) \) \(+ \left( {2m - 8} \right){\log _{\frac{1}{2}}}\sqrt {f\left( x \right) + 1} + 2m = 0\) có nghiệm \(x \in \left( { - 1;1} \right)\).

Đáp án đúng là: A
Quảng cáo
- Đặt ẩn phụ \(t = {\log _2}\left( {f\left( x \right) + 1} \right)\), tìm điều kiện của \(t\).
- Đưa phương trình đã cho về dạng phương trình bậc ba ẩn \(t\).
- Tiếp tục đưa phương trình bậc ba về dạng tích. Giải phương trình và tìm điều kiện để phương trình có nghiệm \(t\) thỏa mãn điều kiện ở trên.
- Kết hợp điều kiện đề bài và đếm số giá trị của \(m\) thỏa mãn.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













