Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mội \(y\) luôn tồn tại

Câu hỏi số 463497:
Vận dụng cao

Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mội \(y\) luôn tồn tại không quá 63 số nguyên \(x\) thỏa mãn điều kiện \({\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right).\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:463497
Giải chi tiết

Đặt \(f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\) (coi \(y\) là tham số).

Điều kiện xác định của \(f\left( x \right)\) là:  \(\left\{ {\begin{array}{*{20}{c}}{x + {y^2} > 0}\\{{y^2} + y + 64 > 0}\\{x - y > 0}\end{array}} \right.\)

Do \(x,\,\,y\) nguyên nên \(x > y \ge \(f\left( x \right)\) - {y^2}\). Cũng vì \(x,\,\,y\) nguyên nên ta chỉ xét  trên nửa khoảng \(\left[ {y + 1; + \infty } \right)\). Ta có:

\(f'\left( x \right) = \dfrac{1}{{\left( {x + {y^2}} \right)\ln 2020}} - \dfrac{1}{{\left( {x - y} \right)\ln 2021}} - \dfrac{1}{{\left( {x - y} \right)\ln 4}} < 0,\,\,\forall x \ge y + 1\)

Ta có bảng biến thiên của hàm số \(f\left( x \right):\)

Yêu cầu bài toán trở thành: \(f\left( {y + 64} \right) < 0\)

\( \Leftrightarrow {\log _{2020}}\left( {{y^2} + y + 64} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) < {\log _4}64\)

\( \Leftrightarrow {\log _{2021}}\left( {{y^2} + y + 64} \right)\left( {{{\log }_{2020}}2021 + 1} \right) < 3\)

\( \Leftrightarrow {y^2} + y + 64 - {2021^{\dfrac{3}{{{{\log }_{2020}}2021 + 1}}}} < 0\)

\( \Leftrightarrow  - 301,76 < y < 300,76\)

Mà \(y\) nguyên nên \(y \in \left\{ { - 301; - 300; \ldots ;299;300} \right\}\).

Vậy có 602 giá trị nguyên của \(y\) thỏa mãn yêu cầu.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com