Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(I = \int {\dfrac{x}{{1 + \sqrt {x + 1} }}dx} \). Nếu đặt \(t = \sqrt {x + 1} \) thì \(I = \int {f\left( t

Câu hỏi số 466660:
Nhận biết

Cho \(I = \int {\dfrac{x}{{1 + \sqrt {x + 1} }}dx} \). Nếu đặt \(t = \sqrt {x + 1} \) thì \(I = \int {f\left( t \right)dt} \), trong đó \(f\left( t \right)\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:466660
Giải chi tiết

Ta có: \({t^2} = x + 1\) nên \(2tdt = dx\). Suy ra

\(I = \int {\dfrac{x}{{1 + \sqrt {x + 1} }}dx}  = \int {\dfrac{{{t^2} - 1}}{{1 + t}}.2tdt}  = \int {\left( {t - 1} \right).2tdt}  = \int {\left( {2{t^2} - 2t} \right)dt} \)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com